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Abstract
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1 Introduction

Graph theory is an old subject, but one that has many fascinating modern
applications. These applications in turn have offered important stimulus to
the development of the field, leading to generalizations of important graph-
theoretical concepts and challenging questions about them.

We will illustrate these points with three graph-theoretical concepts: graph
coloring, intersection graph, and competition graph. For each, we will mention
a variety of applications, concentrating on a few; discuss generalizations related
to applications; and describe a few recent results and open questions.

We will use the terminology of graph theory from the book [124]. Formally,
a graph consists of a set V called the set of vertices or points and a set E called
the set of edges and consisting of unordered pairs of vertices.

2 Graph Coloring

A coloring of a graph is an assignment of a color to each vertex so that if two
vertices are joined by an edge, they get different colors. We say that a graph
is k-colorable if it can be colored in k or fewer colors. The smallest k so that
graph G is k-colorable is called the chromatic number of G and is denoted by
χ(G). For an introduction to graph coloring, see [124].

2.1 Applications of Graph Coloring

Graph coloring has many fascinating applications. See [127] for a survey of such
applications. In channel assignment, we have a set of transmitters taken to
be the vertices of a graph, an edge means that the corresponding transmitters
interfere, and the color assigned to a vertex is its assigned channel. The idea
is that if two transmitters interfere, they get different channels. The channel
assignment problem was formulated graph-theoretically in [6, 60] and has been
studied widely. See [166] for an example of a recent paper on the subject.

In traffic phasing, we have a set of individuals (or cars or ...) with requests to
use a facility (room, tool, traffic intersection). These are taken to be the vertices
of a graph and an edge means their requests interfere. The color assigned to a
vertex is the time the facility is assigned to the individual. The idea is that if
two individuals have interfering requests, the individuals will be given different
times to use the facility. This problem arises in phasing traffic lights, but also
in a variety of other scheduling problems. An early paper formulating a graph-
theoretical approach to the traffic phasing problem is by Stoffers [144]. Stoffers’
method was discussed and generalized in [106, 107, 108, 118, 120, 123].

Graph coloring also arises in scheduling meetings of legislative committees.
In work connected to the legislature in the State of New York in the USA,
various legislative committees are taken to be vertices of a graph and an edge
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means the committees have a member in common. The color assigned to a
vertex is its assigned meeting time and, of course, if two committees have a
common member, they must be assigned different meeting times. This problem
was studied for the New York State legislature in [9] and an exposition of it
can be found in [124]. A similar problem arises in scheduling final exams at a
university or jobs in a factory.

Graph coloring has also arisen in assigning schedules to garbage trucks in
the City of New York. Here, the vertices of a graph represent “tours” of garbage
trucks, schedules of sites they visit on a given day, an edge means they visit a
common site, and the color assigned to a vertex is the day of the week the “tour”
is scheduled to run. If two tours visit a common site, they must get different
days. This graph coloring problem is a subproblem that arises as part of a large
and complicated problem in operations research and was discussed in [151]. See
also [118, 124] for an exposition of the approach.

In the fleet maintenance problem, we have a set of vehicles (planes, cars,
ships) scheduled for regular maintenance. These become the vertices of a graph
and an edge means that the corresponding vehicles are in the maintenance
facility at overlapping times. The color gives the space assigned to a vehicle and
two vehicles scheduled into the facility at overlapping times must get different
spaces. This problem first arose in shipyards with the “vehicles” being ships
and was studied at IBM by Alan Hoffman and Ellis Johnson (see [50]). For
more general discussion of the problem, see [106, 124].

In the task assignment problem, a variety of tasks need to be performed. The
tasks become vertices of a graph and an edge means that the corresponding tasks
use a common tool or common space or common worker. Then the color is the
time assigned to the task. If two tasks use a common tool or space or worker,
then they must get different times for these tasks. See [106, 124] for a discussion.

The mobile radio frequency assignment problem is concerned with assigning
frequencies to mobile phones in a region. The region is divided into zones, which
are the vertices of a graph, and an edge between two zones means that the
phones in the two zones interfere. The color assigned to a zone is the frequency
to be used by the phones in that zone, and the restriction is that if two zones
interfere, they must get different frequencies. This problem was first formulated
graph-theoretically by Gilbert [48]. For discussion, see [106, 120, 123].

2.2 Variants of Ordinary Graph Coloring

The problems described in the previous subsection often have complications that
make ordinary graph coloring an oversimplified model. These complications
have given rise to fascinating new graph coloring concepts.
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2.2.1 T -Coloring

One complication is that channels assigned to interfering transmitters might be
subject to various distance constraints. We can formalize this by talking about
a set T of nonnegative integers. We can think of a channel as a positive integer.
Then, the idea is that interfering transmitters cannot get channels which are
separated by an integer in the set T , thought of as a disallowed separation.
Formally, we seek a function f that assigns a positive integer to each vertex of
a graph (V, E) so that

{x, y} ∈ E → |f(x) − f(y)| /∈ T.

A function f satisfying this condition is called a T-coloring. The special case
of T = {0} is ordinary graph coloring. Another simple case is T = {0, 1}.
Here, interfering transmitters get not only different channels, but non-adjacent
channels.

Consider for example the case of a complete graph on three vertices and
the set T = {0, 1, 4, 5}. We can color the vertices “greedily,” using the lowest
acceptable positive integer for each. In that case, we would color the first
vertex 1, the second 3, and the third 9. Another T -coloring would use the
integers 1, 4, 7. These two T -colorings are comparable in terms of the number of
colors (channels) used. However, the second is better in terms of the separation
between the largest and smallest colors used. This separation is called the span
of the T -coloring and the minimum span over all T -colorings is denoted spT (G).

T -colorings were introduced by Hale [60] and formalized later by Cozzens
and Roberts [29]. Since then, there have been dozens of papers written on T -
colorings, and five Ph.D. theses [11, 92, 111, 146, 162]. For a survey of the
literature on this topic, see [126].

There is much work to be done on T -colorings. For example, we don’t
even know spT (Kp) for every T -set and every complete graph Kp. (Kp has
p vertices and all possible edges.) Cozzens and Roberts [29] showed that if
T = {0, 1, 2, ..., r}, then

spT (G) = (r + 1)[χ(G) − 1] = spT (Kχ(G)).

The result even holds if T = {0, 1, 2, ..., r} ∪ S, where S does not contain
a multiple of r + 1. Such a set T is called an r-initial set. For example, T =
{0, 1, 2, 5, 7} is 2-initial.

Raychaudhuri [111, 112] showed that if T = {0, s, 2s, ..., ks}, then

spT (G) = st + skt − sk − 1 if χ(G) = st

and

spT (G) = st + skt + p − 1 if χ(G) = st + p, 0 < p < s.
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In both cases, spT (G) = spT (Kχ(G)).
Raychaudhuri showed that the same result holds if T = {0, s, 2s, ..., ks}∪ S

where S is contained in {s+1, s+2, ..., ks−1}. Such a set T is called a k-multiple
of s set.

Another important open problem is to determine the sets T and graphs G
for which an obvious greedy algorithm will obtain the optimum span. Cozzens
and Roberts [29] showed that for unit interval graphs (to be defined below)
and r-initial sets T , the greedy algorithm obtains spT (G) when applied to a
so-called compatible vertex ordering. Raychaudhuri [111, 112] showed that for
triangulated graphs (graphs in which every cycle of length greater than 3 has a
chord) and for either r-initial sets or k-multiple of s sets T , the greedy algorithm
obtains spT (G) when applied to the reverse of a so-called perfect elimination
ordering.

2.2.2 L(2, 1)-Coloring

Another complication in channel assignment is that transmitters might interfere
at different levels. Then we might have a different distance separation require-
ment for each level of interference.

One formalization of this idea is to have two kinds of edges, e.g., a red edge
if two transmitters are within 50 kilometers and a blue edge if they are within
100 kilometers. Then we would also have different sets T for the two colored
edges. If {x, y} is a red edge, we would require |f(x)− f(y)| /∈ T1 , and if {x, y}
is a blue edge, we would require |f(x) − f(y)| /∈ T2.

Another formalization of this is the following: Given a graph G = (V, E),
find a coloring of the vertices with positive integers so that if x and y are joined
by an edge, they get colors that are not in the set T1 = {0, 1}, and if they have
distance 2 in G, then they are not in the set T = {0}. Such an assignment of a
coloring is called an L(2,1)-coloring of G.

L(2, 1)-colorings were introduced by Yeh [169] and Griggs and Yeh [56].
They studied the smallest k so that graph G has an L(2, 1)-coloring using only
integers in {1, 2, ..., k+1}. This number is denoted λ(G). Griggs and Yeh showed
that, in general, the problem of determining λ(G) is NP-complete. On the other
hand, they showed that for trees T, λ(T ) = Δ(T ) + 1 or Δ(T ) + 2, where Δ(T )
is the maximum degree of a vertex. Chang and Kuo [18] gave a polynomial
algorithm for determining λ(T ) for a tree T . For arbitrary graphs, Chang and
Kuo showed that λ(G) ≤ Δ2(G)+Δ(G). Tighter bounds on λ in terms of Δ for
special families of graphs are established in [18, 46, 47, 56, 69, 133, 167, 169].
Griggs and Yeh conjectured that λ(G) ≤ Δ2(G). This conjecture remains open.

More recent work on L(2, 1)-colorings is found in the papers [36, 37] and
these papers provide a variety of references to the literature. They leave open
in general the question of characterizing graphs G such that λ(H) < λ(G) for
all proper subgraphs H of G and the problem of characterizing graphs G for
which there is an L(2, 1)-coloring using integers in {1, 2, . . ., λ(G)+1} such that
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all these integers are used on some vertex.

2.2.3 Set Colorings; n-Tuple Colorings

In all of the problems we have mentioned, it makes sense to speak of assigning
a set of colors to a vertex rather than a single color. If S(x) is the set of colors
assigned to vertex x, then it is natural to require that

{x, y} ∈ E → S(x) ∩ S(y) = ∅.

Such an assignment is called a set coloring. |S(x)| = 1 for all x gives an ordinary
graph coloring. If each set S(x) has exactly n colors, we call this an n-tuple
coloring. The smallest number of colors required for an n-tuple coloring of G is
called the n-tuple chromatic number of G and is denoted by χn(G). Consider
for example the 4-cycle. If we use the color sets {red, blue} and {green, yellow}
alternating around the cycle, then we get a 2-tuple coloring. This shows that
χ2(C4) ≤ 4. Of course, it equals 4. n-tuple colorings were introduced by Gilbert
[48] in connection with the mobile radio frequency assignment problem.

Here is a useful early result about n-tuple colorings. Given graphs G and H,
the lexicographic product G[H] is defined as follows: V (G[H]) = V (G)× V (H)
and (a, b) is joined to (c, d) by an edge if and only if {a, c} ∈ E(G) or a = c
and {b, d} ∈ E(H). Stahl [142] proved that χn(G) = χ(G[Kn]). This result is
often more useful theoretically than practically – just try to compute χ2(C4)
this way! Theoretically, for example, the result is used to prove that if G
is a weakly γ-perfect graph, then χn(G) = nχ(G). (G is weakly γ-perfect if
its chromatic number is equal to the size of its largest clique, i.e., the largest
complete subgraph.) This holds for G = Cp for p even. For example, we know
that χ2(C4) = 4 = 2χ(C4).

To show how difficult n-tuple coloring can be, we consider the Kneser graph
G(m, p): The vertices are the p-element subsets of an m-element set. There is an
edge between two subsets if and only if they are disjoint. A sticky open question
in the theory of n-tuple colorings is to find χn(G(m, p)). This is important
because ordinary colorings are “homomorphisms” into complete graphs while n-
tuple colorings are homomorphisms into Kneser graphs. Lovász [93] calculated
χ(G(m, p)) = χ1(G(m, p)) in 1978 in the process of settling an important open
problem in graph theory by proving Kneser’s conjecture. (Kneser’s conjecture
says: If we split the p-element subsets of a (2p+k)-element set into k+1 classes,
one of the classes will contain two disjoint p-element subsets.)

A formula for χn(G(m, p)) was conjectured by Stahl [142]: If n − 1 = qp +
r, q ≥ 0, 0 ≤ r < p, then

χn(G(m, p)) = (q + 1)m− 2(p − r − 1).

This formula is known to hold for a variety of values of n, p, m. See for example
[40, 44, 142]. However, its truth or falsity remains open in general.
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Many sets other than sets of n integers have been studied in connection with
set colorings. Among the most important are sets consisting of real intervals
or unions of real intervals. These are discussed briefly below, in Sec. 3.5. See
[107, 127] for a variety of concrete cases and references.

2.2.4 List Coloring

In many applications, there is an extra complication. There are some acceptable
colors for each vertex and the color assigned to a vertex must be chosen from
the set of acceptable colors. For instance, in channel assignment, we specify a
set of acceptable channels and in traffic phasing a set of acceptable times.

Given a graph G, let L(x) be a non-empty set of integers assigned to vertex
x. We call L a list assignment for G. We seek a graph coloring f so that for
every vertex x, f(x) is in L(x). Such a coloring is called a list coloring for (G, L).
If a list coloring exists, we say that (G, L) is list colorable. List colorings were
introduced in the 1970’s, independently by Vizing [156] and by Erdös, Rubin,
and Taylor [32], and there have been a very large number of papers about this
subject in the past decade. Some recent survey articles are [3, 88, 155].

A great deal of emphasis has been placed on the case where each set L(x)
has the same fixed number of elements, k. If (G, L) can be list colored for every
possible list assignment L in which all |L(x)| = k, we say that G is k-choosable.
To give an example, we note that C5 is not 2-choosable. Use L(x) = {1, 2} on
each vertex. If there is a list coloring for this list assignment, then C5 has an
ordinary coloring using two colors. On the other hand, it is easy to show that
C4 is 2-choosable.

Erdös, Rubin, and Taylor [32] characterized 2-choosable graphs. However,
the characterization of 3-choosable graphs remains a wide open problem.

There have been major results on choosability in the past ten years. For
example, Erdös, Rubin, and Taylor [32] conjectured that every planar graph is
5-choosable but that there are planar graphs that are not 4-choosable. Alon
and Tarsi [4] proved that bipartite planar graphs are 3-choosable. Voigt [157]
showed that not all planar graphs are 4-choosable. Thomassen [147] proved that
every planar graph is 5-choosable. In spite of this progress, many open questions
about list coloring and other generalizations of ordinary graph coloring remain.
See [67] for many such problems.

3 The Second Concept: Intersection Graph

Let F = {S2, S2, . . . , Sn} be a family of sets. We can build a graph correspond-
ing to F by taking the vertex set to be F and including an edge between Si and
Sj if and only if Si ∩ Sj 	= ∅. This graph is called the intersection graph of the
family of sets. For instance, consider the sets
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S1 = {a, b, c}, S2 = {b, c, d, e}, S3 = {d}, S4 = {e}.

Then in the intersection graph, the edges join S2 to the other vertices.
It is natural to ask: What graphs arise this way? Formally put: Given a

graph G = (V, E), can we assign a set S(x) to each vertex x of V so that for all
x 	= y,

{x, y} ∈ E ↔ S(x) ∩ S(y) 	= ∅

.
Marczewski [102] proved that very graph is the intersection graph of some family
of sets.

3.1 Interval Graphs

The question of what graphs arise as intersection graphs is much more inter-
esting and leads to really important ideas if we restrict the families of sets to
sets of certain kinds. We shall concentrate on one important special case. If
F is a family of intervals on the real line, then its intersection graph is called
an interval graph. We shall return to the question of what graphs are interval
graphs. First, we note that this one very simple concept has a large number
of fascinating applications. For general references on interval graphs and their
applications, see [34, 50, 118, 120, 148].

3.2 Applications of Interval Graphs

A variant of the following problem was one of the motivating problems for the
notion of interval graph (Hajös [59]). A group of students goes to the library
and later a book is missing. To find out who might have taken it, we try to
reconstruct when people were there. We assume that each student stays in the
library for a certain interval of time, then leaves. For each pair of students x
and y, we know whether or not x and y saw each other. Can we construct time
intervals so that if x and y saw each other, their time intervals in the library
overlap, and if they didn’t see each other, then their time intervals in the library
do not overlap? We define a graph G by letting the vertices be the individuals
and an edge between two individuals mean that they saw each other. Then
our question is equivalent to the question: Is G an interval graph? Even if the
answer is yes, we need a way to find the intervals. There are good algorithms
for doing so, as we shall note below. Also, even finding the intervals is just a
first step in solving the mystery. However, it is an important first step.

Interval graphs arose independently from Hajös’ problem and from a problem
in molecular genetics known as Benzer’s Problem [7, 8]. Seymour Benzer was a
Nobel Prize-winning geneticist. In 1959, he was studying the “fine structure”
of bacterial genes; it was not known whether or not the collection of DNA

7



composing a bacterial gene was linear. He asked: Is the fine structure of the
gene linear or is it circular or does it have a different topology? How do we tell if
we can’t see it? At that time, there were no sophisticated methods (such as gel
electrophoresis) for answering questions like this. Benzer observed that we can
determine whether or not two connected substructures inside the gene overlap.
We do it by gathering mutation data. He then asked: Is the overlap information
consistent with a linear structure? Equivalently, the question can be stated this
way: Can we assign an “interval” to each substructure so that two substructures
overlap if and only if their intervals do? Or: Is the graph of overlaps among
substructures an interval graph? There is no longer active interest in Benzer’s
problem, but there is a great deal of modern work in molecular biology that
involves interval graphs. For example, interval graphs arise in connection with
research on restriction maps which show the location of certain sites (short
specific sequences) on a specific DNA ([125, 163, 165]). More generally, interval
graphs also play an important role in the whole study of physical mapping in
molecular biology. See [57, 136, 164] for a general introduction to this problem
and [1, 2, 10, 68, 71, 72, 138, 139, 170] for examples of research papers involving
interval graphs in physical mapping.

Interval graphs also arise in the study of preference and indifference in eco-
nomics and psychology. Suppose we consider some alternative purchases about
which we do not have a good estimate of the value, such as antiques for exam-
ple. We can associate with each alternative u a range of possible values J(u).
We would be comfortable in saying that we prefer u to v if the interval J(u) is
strictly to the right of the interval J(v), and otherwise not. Supose that we are
indifferent between u and v if and only if we neither prefer u to v nor v to u.
Then we are indifferent between u and v if and only if J(u) and J(v) overlap.
Let V be the set of alternatives under consideration and define a graph on V
by letting edges correspond to indifference. If observed indifference judgments
fit our assumptions, then this graph is an interval graph. For further discussion
of interval graphs as models of indifference, see [116, 118, 122].

Seriation or sequence dating is an important area in in archaeology. Here,
we study a variety of types of artifacts (e.g., pottery) dug up in archaeological
digs. We would like to place them in chronological order, assuming each type
of artifact was in use over an interval of time. Let us build a graph with the
types of artifacts as vertices. Suppose that an edge means that they were found
in common in some dig. If they were found in common in some dig, then it is
reasonable to conclude that the time intervals during which the two artifacts
were in use overlapped. Assuming enough digs, then we can assume that we
have two types of artifacts appearing in common in some dig if and only if their
time intervals overlapped. Thus, the graph is an interval graph and we can use
the corresponding assignment of intervals to find a preliminary chronological
order. For more on seriation in archaeology, see [64, 73, 74, 75, 76, 77, 78, 118,
120, 121, 140].

An analogous problem arises in seriation in developmental psychology. In
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studying the development of children, psychologists have noted that traits such
as crawling, sitting up, etc. each develop over a certain interval of time over the
course of development of the child. There is a stage when a child crawls, a stage
that overlaps when the child is starting to sit up, a stage when the child begins
to pull itself up to a standing position, etc. It is hypothesized that the pattern
of development is common to all children. In studying this hypothesis, we can
build a graph whose vertices are the traits and which has an edge between two
traits if they are found in common in some child. Assuming we have studied
enough children, we expect that two traits were found in common in some child
if and only if they developed in overlapping intervals of time. Thus, the graph
is an interval graph and we can use the corresponding assignment of intervals to
find a preliminary developmental order. For more on seriation in developmental
psychololgy, see [26, 118, 120].

3.3 What Graphs are Interval Graphs?

There are various theorems that allow us to tell if a graph is an interval graph.
Early results were obtained by Lekkerkerker and Boland [91], Gilmore and Hoff-
man [49], and Fulkerson and Gross [42], and a polynomial algorithm was devel-
oped by Booth and Lueker [12].

Here is one sample result. A clique in a graph G is a complete subgraph and
we say it is maximal if it is not contained in any larger clique. We define the
maximal clique-vertex incidence matrix as follows. The rows correspond to the
maximal cliques K1, K2, . . . , Kp and the columns to the vertices x1, x2, . . . , xn,
with the i, j entry equal to 1 if Ki contains xj and equal to 0 otherwise.

Consider for example the graph H = (V, E) where

V = {a, b, c, d, e, f, g}

E = {{a, b}, {b, c}, {a, c}, {d, e}, {f, g}, {e, f}}.

Then the maximal cliques are K1 = {a, b, c}, K2 = {d, e}, K3 = {f, g}, K4 =
{e, f} and the maximal-clique vertex incidence matrix is the following matrix:

⎛
⎜⎜⎝

a b c d e f g

K1 = abc 1 1 1 0 0 0 0
K2 = de 0 0 0 1 1 0 0
K3 = fg 0 0 0 0 0 1 1
K4 = ef 0 0 0 0 1 1 0

⎞
⎟⎟⎠

In the 4-cycle C4 with vertices a, b, c, d in order around the cycle, we have the
maximal-clique vertex incidence matrix
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⎛
⎜⎜⎝

a b c d

ab 1 1 0 0
bc 0 1 1 0
cd 0 0 1 1
ad 1 0 0 1

⎞
⎟⎟⎠

Fulkerson and Gross [42] showed that a graph is an interval graph if and only
if the rows of the maximal clique-vertex incidence matrix can be reordered so
that the 1’s in each column appear consecutively. We see that this can be done
with the graph H defined above. If we reorder the maximal cliques, we get the
following matrix:

⎛
⎜⎜⎝

a b c d e f g

K1 = abc 1 1 1 0 0 0 0
K2 = de 0 0 0 1 1 0 0
K4 = ef 0 0 0 0 1 1 0
K3 = fg 0 0 0 0 0 1 1

⎞
⎟⎟⎠

However, there is no way to reorder the rows of the maximal-clique vertex
incidence matrix for C4 in order to accomplish the same goal. That shows that
C4 is not an interval graph, as is easy to demonstrate directly. A matrix whose
rows can be permuted so that the 1’s in each column appear consecutively is
said to have the consecutive 1’s property (for columns). This property is very
useful in a variety of applications. See [28] for a discussion.

An ordering of maximal cliques for which the maximal clique-vertex inci-
dence matrix has 1’s appearing consecutively in each column is called a consec-
utive ordering. We shall see that consecutive orderings are very important in
applications.

3.4 Circular-Arc Graphs

Other families of interesection graphs are also of interest. We say that G is a
circular-arc graph if it is the intersection graph of a family of arcs on a circle.
While C4 is not an interval graph, it is easy to see that it is a circular-arc graph.

It seems natural to conjecture the following: A graph is a circular-arc graph
if and only if the rows of the maximal clique-vertex incidence matrix can be
reordered so that the 1’s in each column appear consecutively in a circular sense
(i.e., continuing from bottom to top). However, this is not the case. The graph Γ
consisting of a triangle with a pendant edge added to each vertex is a circular-arc
graph. However, there is no way to reorder rows of the maximal clique-vertex
incidence matrix so that the 1’s in each column appear consecutively in a circular
sense. (Γ has vertices a, b, c, x, y, z with a, b, c forming a triangle and edges from
x to a, y to b, and z to c.) Technically speaking, one needs to add a condition
that the family of circular arcs has the Helly property: Any subfamily of arcs
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that pairwise overlap has a common point. Then, we can conclude that a graph
is the intersection graph of a family of circular arcs with the Helly property
if and only if we can reorder the rows of the maximal clique-vertex incidence
matrix so that the 1’s in each column appear consecutively in a circular sense.
Any family of circular arcs whose intersection graph is the graph Γ defined
above would have circular arcs corresponding to a, b, c pairwise overlapping, but
no one point belonging to all three such arcs. Thus, Γ is not the intersection
graph of a family of circular arcs with the Helly property.

The problem of recognizing or characterizing circular-arc graphs is difficult.
There is a long literature on this problem. Finally, good algorithms were de-
scribed for testing for whether not a graph is a circular-arc graph. However,
structural understanding of these graphs remains difficult to obtain. For work
on the circular-arc graph recognition problem, see for example [33, 87, 141, 149,
150, 152, 153, 154]

3.5 Connection to Traffic Phasing

The notions of circular-arc graph and interval graph have applications in traffic
phasing. We have different streams of traffic approaching an intersection. We
would like to put in a traffic light. The light will give a green signal to each
traffic stream over an interval of time. (Similar problems arise in scheduling
other facilities such as computers, rooms, etc.)

We can think of a large circular clock and the traffic streams each receiving
an arc of time along that clock for their green time. Some traffic streams are
compatible and some are not. We build an incompatibility graph by taking the
vertices to be the traffic streams and an edge between two traffic streams if they
are incompatible. A green light assignment is called feasible if incompatible
traffic streams get non-overlapping circular arcs. If (V, E) is the incompatibility
graph, then if J(x) is a circular arc assigned to traffic stream x in a feasible
green light assignment,

{x, y} ∈ E → J(x) ∩ J(y) = ∅.

If we think of each J(x) as a set of colors or times assigned to a vertex x, we have
a set coloring problem, more specifically, what is sometimes called an interval
coloring problem.

It is useful to consider the compatibility graph instead, the graph (V, E′)
whose edges join compatible traffic streams. For this graph, we have:

{x, y} ∈ E′ ← J(x) ∩ J(y) 	= ∅.
Note that we do not necessarily have ↔. The set of all edges in E′ correspond-
ing to x, y so that J(x)∩J(y) 	= ∅ is a subset of E′. Thus, a feasible assignment
defines a so-called spanning subgraph H of the compatibility graph (spanning
meaning that the subgraph has the same vertex set and a subset of the edges).
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Moreover, since the J(x)’s are circular arcs, H is a circular-arc graph. Thus,
feasible traffic light assignments correspond to spanning subgraphs of the com-
patibility graph that are circular-arc graphs. Unfortunately, circular-arc graphs
are not easy to identify.

Observe that if the last green light ends before the first starts, then H is an
interval graph. Real traffic lights have this property. Thus, feasible traffic light
assignments correspond to spanning subgraphs of the compatibility graph that
are interval graphs. Fortunately, interval graphs are easy to identify.

Consider for example a traffic intersection with eastbound traffic stream
a, westbound traffic stream b, northbound traffic stream c, southbound traffic
stream d, left-turning traffic stream e going from south to west, and left-turning
traffic stream f going from north to east. (This intersection is studied in [118].)
A compatibility graph is given by taking

V = {a, b, c, d, e, f}

E = {{a, b}, {c, d}, {d, f}, {e, f}, {c, e}}.
Note that this is not a circular-arc graph or an interval graph. However, omitting
edge {c, e} gives us an interval graph spanning subgraph H and this corresponds
to a feasible green light assignment, which can be found by an assignment of
intervals (or circular arcs) whose intersection graph is this spanning subgraph.
One such assignment is the following:

J(a) = (0, 1), J(b) = (0, 1), J(c) = (1, 3), J(d) = (1, 6), J(e) = (6, 10), J(f) = (3, 10).

Of all feasible green light assignments, which ones are the best or most
efficient? We can make each green light interval very short, thus almost surely
obtaining a feasible assignment. However, we usually specify that each green
light interval have a certain minimum length. If the traffic light is at an isolated
intersection with no other traffic lights nearby, then it is reasonable to try to find
an assignment that minimizes the sum total of waiting times. If the intersection
is not isolated, vehicles can be expected to arrive at the intersection at given
times. Then, we try to minimize the (weighted) time lags between ideal and
realized starting times.

We concentrate on the isolated traffic intersection. A good procedure was
developed by traffic scientist Karl Stoffers [144]. See [118] for an exposition of
this procedure. Stoffers’ idea was:

• 1. Find all spanning subgraphs of the compatibility graph that are interval
graphs.

• 2. For each such spanning subgraph, find the most efficient feasible green
light assignment.
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• 3. Find the overall most efficient assignment by comparing the solutions
in step 2.

How do we find the solution in step 2? We use the Fulkerson-Gross charac-
terization of interval graphs given in Sec. 3.3.

• 2a. Find a consecutive ordering of maximal cliques, i.e., an ordering
so that the maximal clique-vertex incidence matrix has consecutive 1’s:
K1, K2, . . . , Kp. Each clique corresponds to a “phase” during which all of
the traffic in that clique gets a green light.

• 2b. For each vertex u, let it get green light in the first Ki that contains
it and continue until the last Ki that contains it. Since the matrix has
consecutive 1’s, each vertex is in a consecutive set of maximal cliques and
so we end up with an interval of green light time.

In the specific example given above, the maximal clique-vertex incidence
matrix with rows permuted to give consecutive 1’s is the following:

⎛
⎜⎜⎝

a b c d e f

K1 = ab 1 1 0 0 0 0
K2 = cd 0 0 1 1 0 0
K3 = df 0 0 0 1 0 1
K4 = ef 0 0 0 0 1 1

⎞
⎟⎟⎠

K1, K2, K3, K4 is a consecutive ordering and corresponds to one phasing. In
this phasing, we start with a green light for streams a and b, the eastbound
and westbound traffic. We then have a green light for the northbound and
southbound traffic. In the third phase, we turn off the green light for the
northbound traffic and turn on a green light for left-turning traffic from north
to east. Finally, in the fourth phase, we have both left turn arrows on.

Another consecutive ordering is K1, K4, K3, K2. Here, we start with the
east-west traffic, then turn on both left-turn arrows, then replace the left-turning
traffic from south to west with southbound traffic, and finish with north-south
traffic.

A different interval graph spanning subgraph would give some entirely differ-
ent phasings. The reader might wish to experiment to see what phasings can be
found if instead of omitting edge {c, e} from the compatibility graph, we omit
instead edge {c, d}.

The rest of the solution requires us to find the lengths of the intervals (cir-
cular arcs).

• 2c. Assign maximal clique Ki a duration di.

• 2d. How do we find the values di that minimize the total waiting time?
This is a linear programming problem. It was formulated in some gener-
ality by Opsut and Roberts [107, 108].
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Note that the method is not at all efficient in a technical sense. Even the
problem of finding all maximal cliques of a graph is an NP-complete problem.
However, the graphs to which the method is applied are relatively small, so the
method can be applied in practice in a reasonably efficient way.

For more general discussion of the above procedure, see [106, 107, 108, 123].

3.6 Unit Interval Graphs

The special case of interval graphs where every interval has the same unit length
is an important case. Such graphs, called unit interval graphs, were character-
ized in [115, 116] and have found numerous applications in philosophy of science,
preference and utility measurement, molecular biology, etc. See [50, 120, 122]
for examples of some of these applications.

3.7 Unions of Two Intervals

A variant of the traffic phasing problem is to allow green light assignments where
each “green light set” is a union of two intervals. This problem is difficult in part
because it is even an open problem to characterize the double interval graphs,
intersection graphs of families of sets each of which is a union of at most two
intervals. For some results about double interval graphs, see [55, 61, 111, 113].

3.8 Intersection Graphs of “Boxes” in Euclidean Space

Suppose we have boxes in Euclidean k-space, generalized rectangles with sides
parallel to the coordinate axes. In 2-space, these are rectangles. What graphs
arise as the intersection graphs of boxes in k-space? This is in general an
unsolved problem, even for k = 2, and is known to be NP-complete for k > 2
[27, 168]. For k = 1, boxes reduce to intervals, and the intersection graphs of
boxes are exactly the interval graphs.

It is easy to see that every graph is the intersection graph of boxes in k-space
for some sufficiently large k. The smallest such k is called the boxicity of the
graph. This concept was introduced in [115, 117]. It is still fundamentally an
open problem to understand the boxicity of large classes of graphs, even though
this concept goes back to 1967.

Intersection graphs of boxes have a variety of important applications. One
of the major applications is in ecology and we turn to this as we discuss the
third basic concept of emphasis in this paper, that of competition graph.

4 Third Concept: Competition Graph

Suppose D = (V, A) is a digraph. The competition graph C(D) has vertex set V
and an edge between x and y if there is u in V so that (x, u) and (y, u) are arcs
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of A. This notion was introduced by Joel Cohen in 1968 [19]. We say that G is
a competition graph if it is C(D) for some D. In some cases, we require that D
be acyclic, but we shall not make that assumption here except in certain cases.
Since Cohen’s work, a large literature on the subject of competition graphs has
arisen. This literature is surveyed in [80, 95, 125, 128].

4.1 Applications of Competition Graphs

Competition graphs arose in the work of Cohen [19] in connection with an
application in ecology. Here, D = (V, A) represents a food web for an ecosystem.
V is the set of species in the ecosystem and (x, y) ∈ A if x preys on y. Then
x, y is an edge of C(D) iff x and y compete for a common prey u. Consider
for example the following food web F (part of a food web in [16]). The species
are Bear (B), Deer (D), Fox (F), Grass (G), Hare (H), Owl (O), Raccoon (R),
Shrew (S), and Wildcat (W) and the predator-prey relations are given by the
ordered pairs (B,D), (B,G), (B,S), (O,G), (D,G), (F,O), (F,H), (F,S), (H,G),
(R,O), (W,O), (W,S). The Foxes and Wildcats compete because they both eat
owls, and so there is an edge {F,W} in the competition graph. The ecological
application of competition graphs was a primary motivation for the paper [20],
the book [21] and a large number of papers on the topic.

A second application of competition graphs is in communication over a noisy
channel. Here, V is the set of letters in an alphabet and (x, y) ∈ A if when x
is sent, y could be received. Then x, y is an edge of C(D) iff x and y could be
received as the same letter. C(D) is the confusion graph. This graph arises in
Shannon’s theory of noisy channels and in his definition of the capacity of such
a channel (see for example [58, 94, 104, 120, 137]). These concepts give rise to
challenging open questions in graph theory. For example, it took a long time to
calculate the so-called Shannon capacity of the simple confusion graph C5 (see
[94]), but we still don’t know the capacity of all cycles.

Competition graphs also arise in channel assignment. Here, V is a set of
transmitting/receiving stations and (x, y) ∈ A if a signal sent at x can be
received at y. Then x, y is an edge of C(D) iff messages sent by x and y can be
received at the same place. C(D) is the conflict graph. The channel assignment
problem we have discussed before in Sec. 2.1 is concerned with coloring this
graph. The channel assignment application has given rise to a lot of work on
competition graphs of undirected graphs. See [98, 99, 101, 114].

A fourth application of competition graphs is in modeling of complex sys-
tems. In large-scale computer models, for instance those dealing with energy or
economic systems, we often deal with a matrix M representing the contraints of
an LP or a similar problem. Here, we can take V to be the set of rows of M and
(x, y) ∈ A if M(x, y) 	= 0. Then x, y is an edge of C(D) iff rows x and y have
a nonzero entry in the same column. They “link” a common variable. C(D) is
known as the row graph of M . The row graph has many uses, including appli-
cations to the structure of linear programs. The properties of row graphs are
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studied in [51, 52, 53, 54] and applications to the structure of linear programs
are discussed in [51, 109, 110].

The problem of phylogenetic tree reconstruction is the following: Given a set
of species and some information about the similarities between pairs of species,
reconstruct an evolutionary (phylogenetic) tree, an oriented tree whose vertices
are species and which has an arc from vertex u to vertex v if v is a direct ancestor
of u, and do so in such a way that two species in S are closer together in the tree
iff they are more similar. Usually, we want species in S to be leaves (vertices
of indegree 0), but suppose we don’t make this assumption. Suppose we also
consider the very special case where all similarities are 0 or 1 and build a graph
G on the vertex set V by taking an edge between x and y if their similarity is 0.
Roberts and Sheng [130] showed that under a particular definition of distance,
the problem of reconstructing the phylogenetic tree reduces to the problem of
finding an oriented tree T which, after addition of loops at each vertex, has
a competition graph that contains G as an induced subgraph. Related papers
on competition graphs and phylogenetic tree reconstruction are [129, 131]. See
[128] for a survey paper on this topic.

4.2 What Graphs are Competition Graphs?

A widely studied problem is to identify what graphs are competition graphs. In
particular, there has been a great deal of work on the special case of competition
graphs of acyclic digraphs. Acyclicity is a natural assumption in the ecological
application that motivated the subject. Note that every acyclic digraph has a
vertex with no outgoing arcs and therefore every competition graph of such a
digraph has an isolated vertex. This is the case in the food web F defined in
Sec. 4.1. Vertices G and S are isolated in the competition graph. We start by
discussing competition graphs of acyclic digraphs.

It was observed in [119] that given any graph G, G together with sufficiently
many isolated vertices is a competition graph of some acyclic digraph. (The
proof is straightforward: Add a new “prey” vertex p(x, y) for each edge x, y of
G and let x and y prey on p(x, y).) We use the notation G ∪ Ir for G together
with r isolated vertices. The smallest number r so that G∪Ir is the competition
graph of an acyclic digraph is called the competition number of G and is denoted
by k(G). This concept was introduced in [119], where it was observed that
characterization of competition graphs of acyclic digraphs is equivalent to the
calculation of competition numbers. Opsut [105] proved that computation of
k(G) is an NP-complete problem.

While the problem of characterizing competition graphs is NP-complete,
there are some interesting graph-theoretical approaches to it. Competition
graphs of acyclic digraphs were characterized by Dutton and Brigham and Lund-
gren and Maybee [31, 96] in terms of edge coverings by cliques. This idea was
generalized to characterizations of graphs of competition number at most m by
Lundgren and Maybee [96] (corrected by Kim [79]), and of competition graphs
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of arbitrary digraphs with loops allowed by Dutton and Brigham [31] and to
competition graphs of arbitrary digraphs without loops by Roberts and Steif
[132].

An interesting special situation is to characterize competition graphs of spe-
cial types of digraphs. For instance, motivated by the channel assignment prob-
lem, Raychaudhuri and Roberts [114] characterized competition graphs of sym-
metric digraphs that are unit interval graphs. Other work on competition graphs
of symmetric digraphs is found in the papers [98, 99] and elsewhere – see survey
[128]. Competition graphs of strongly connected and of hamiltonian digraphs
are studied in [41, 100] and of tournaments in [38, 39].

There has been a great deal of research on competition number. We mention
here two long-term open problems. Opsut [105] calculated the competition num-
ber of a line graph and conjectured that a similar result held for all graphs with
the property that two cliques could cover all of the vertices of the open neigh-
borhood of any vertex. In spite of almost 20 years of work, Opsut’s conjecture
remains open. See [83, 158, 159, 161] for partial results.

The second open problem concerns an elimination procedure for computing
the competition number. Such a procedure was introduced by Roberts [119],
who conjectured that it always led to the competition number. Opsut [105]
showed that this was false. A modified elimination procedure due to Kim and
Roberts [85] is known to calculate the competition number for a large class of
graphs, and it remains open to determine whether or not it always works.

4.3 Ecological Niches

The competition between species is a major motivating application for the study
of competition graphs. In an ecosystem, each species has a “normal, healthy”
environment. This environment can be characterized as follows: There is a range
(interval) of acceptable values of certain parameters, for instance temperature,
humidity, acidity, etc. Suppose there are k such parameters. The set of all points
in Euclidean k-space so that on each parameter, the point is within the given
range, is called the species’ ecological niche. The ecological niche is a “box”
in k-space with sides parallel to the coordinate axes. It is an old ecological
principle that two species compete if and only if their ecological niches overlap,
i.e., iff their boxes overlap. Joel Cohen [19] suggested we try to find the smallest
number of parameters k that are needed to account for observed competitions.
His approach was to define competition in a different way, specifically by using
a food web and letting its competition graph define competition. The question
is: How many parameters are needed so that each species corresponds to an
ecological niche in k-space and so that there is an edge between x and y in the
competition graph if and only if their ecological niches overlap? In other words,
what is the smallest k so that G is the intersection graph of boxes in k-space?

In the case of the food web F defined in Sec. 4.1, there are five maximal
cliques: K1 = {B,D,H,O}, K2 = {B,F,W}, K3 = {F,R,W}, K4 = {G}, K5 =
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{S}. It is easy to see that K1, K2, K3, K4, K5 is a consecutive ordering of max-
imal cliques and hence that the competition graph is an interval graph. So,
one dimension suffices. What is surprising is that, in practice, one dimension
usually suffices. What does that mean? It means that the competition graph
of most real world food webs is an interval graph!

This was first observed in 1968 by Joel Cohen [19]. For more than thirty
years people have been trying to explain why, without complete success. The
approaches to this problem have been both mathematical and ecological. This
has led to a large scientific literature. We discuss this problem in the next
subsection.

4.4 What Food Webs Have Competition Graphs that are
Interval Graphs?

A fundamental open problem in applied graph theory is to characterize the
acyclic digraphs (food webs) whose competition graphs are interval graphs.
There are many approaches to this problem. We give some sample results.
From a purely computational point of view, the fundamental open problem is
easy to solve: Given a digraph, compute its competition graph (easy to do) and
use one of the standard linear-time algorithms for checking if this is an interval
graph. (A fundamental algorithm is the Booth-Lueker algorithm that uses PQ-
trees. See [12].) However, we seek a solution that highlights the structure and
properties of the food web that lead to an interval graph competition graph.

Cohen [21] took a statistical approach to this problem. He generated food
webs randomly and determined whether or not their competition graphs were
interval graphs. By varying the distributions from which the food webs were
generated according to some assumptions corresponding to structure, he tried
to find models which gave rise to interval graph competition graphs with high
probability. (Other statistical/probabilistic approaches to the structure of com-
petition graphs can be found in the papers [15, 22, 23, 24, 25, 103].)

Lundgren and Maybee [97] found a characterization of acyclic digraphs whose
competition graph is an interval graph that makes use of the Fulkerson-Gross
characterization of interval graphs discussed in Sec. 3.3 and essentially reduces
the problem to determining directly if a competition graph is an interval graph.
It only begins to shed light on the structural properties of a digraph required for
it to have a competition graph that is an interval graph. Steif [143] approached
the problem from just such a structural point of view. However, he obtained
a negative result: There is no forbidden subdigraph characterization of acyclic
digaphs with interval graph competition graphs. Sugihara [145] showed statisti-
cally that the frequency with which food webs have interval graph competition
graphs could be accounted for by requiring that the competition graph be tri-
angulated, i.e., have no cycles of length greater than 3 as generated subgraphs.

Hefner, Jones, Kim, Lundgren, and Roberts [63] approached the problem by
studying digraphs with limited indegrees and outdegrees. They characterized
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the acyclic digraphs with indegree and outdegree at most 2 at each vertex and
which have interval graph competition graphs. This is the most elementary
case, but there is evidence that real world food webs tend to have very low
indegrees and outdegrees (see [22]), so small cases do give useful insights. The
problem remains open for higher bounds on indegree and outdegree. Hefner,
et al. also studied the special case where every vertex has the same indegree
and every vertex has the same outdegree. This turns out to be closely related
to combinatorial designs, in particular block designs. Hefner, et al. showed,
for instance, that under certain circumstances, an acyclic digraph where every
vertex has indegree 0 or k and outdegree 0 or r has an interval graph competition
graph if there is a (b, v, r, k, λ)-design.

D is an interval digraph if two real intervals J(x) and K(x) can be assigned
to each vertex x so that (x, y) is an arc of D iff J(x) ∩ K(y) 	= ∅. (Interval
digraphs are not necessarily acyclic.) Langley, Lundgren, and Merz [89] showed
that interval digraphs have interval graph competition graphs and that every
interval graph is the competition graph of some interval digraph.

4.5 Variants of Competition Graphs

As with the notions of graph coloring and intersection graph, there are many
interesting variations of the notion of competition graph. For instance, if we
take an edge between x and y iff there is a vertex u with arcs (u, x), (u, y) in
D, then we have the common enemy graph of D; if there is an edge between x
and y iff there are u and v with arcs (x, u), (y, u) and (v, x), (v, y) in D, then
we have the competition-common enemy graph of D; and if there is an edge
between x and y iff there is u with arcs (x, u), (y, u) in D or there is v with
arcs (v, x), (v, y) in D, then we have the niche graph of D. In these graphs,
in the ecological interpretation, we have an edge between two species iff they
have a common enemy, or both a common prey and a common enemy, or either
a common prey or a common enemy. Common enemy graphs are studied in
[90, 145, 160], competition-common enemy graphs in [43, 70, 86, 134, 135], and
niche graphs in [5, 13, 14, 17, 35, 45] – to give some references.

Still another variant arises if we take an edge between x and y iff there are
u1, u2, . . . , up with arcs (x, u1), (y, u1), (x, u2), (y, u2), . . . , (x, up), (y, up) in D.
In this case, we speak of the p-competition graph of D. See [65, 66, 81, 82].

For each of these types of graphs, there are characterization problems, no-
tions analogous to competition number, and many open questions.

5 Closing Comment

Graph theory has found widespread application in numerous fields. In turn,
these fields have stimulated the development of many new graph-theoretical
concepts and led to many challenging graph theory problems. We can anticipate
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that the continued interplay between graph theory and many areas of application
will lead to important new developments as we begin a new century.
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